事 例 の 紹 介

「切開」 「切下げ」

ため池の「切開」の検討事例

事例A池

事例A池

ため池の「切開」(ため池廃止)

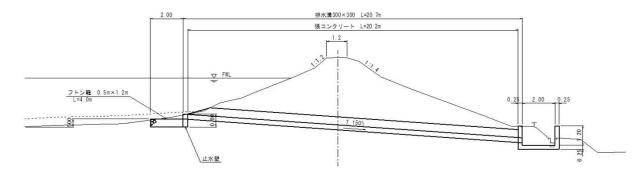
① 現地の状況からヘドロ流出と草木の繁茂が想定されるため、基礎地盤面から0.5m上がりまで「切開」する。

② 流域面積
③ ため池面積
0.037 km²
0.005 km²

④ 設計洪水量 0.972 m³/s (別紙設計洪水流量参照) 5 5年確率洪水量 0.393 m³/s (別紙設計洪水流量参照)

○「切開」及び洪水吐の検討

事例A池は、転作等によりかんがい受益(直接)が無くなくなったことと、池が老朽化し、直下の民家が非常に危険な状態であることから、ため池廃止を検討することとなった。


○洪水吐の構成

本ため池の下流水路は三面張B300×H300である。水路状況を考慮し、1/5年確率洪水量で計画する。(誘導水路)

廃止を行う計画であるが、堤体全部を取り除く計画ではないため、設計洪水流量を流下 出来る断面を確保することとする。 (誘導水路+張コンクリート部)

○洪水吐形式の選定

誘導水路については許容流速を考慮し、縦断計画を行う。

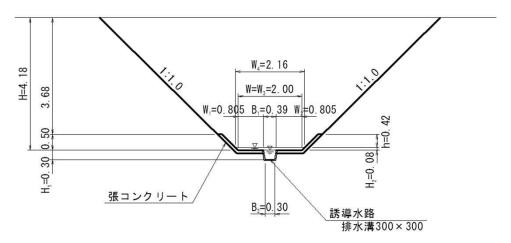
○「切開」断面

誘導水路管理幅:W

管理幅は、軽トラックの進入を想定し水路天端で2.0m確保することとした。

片側 0.805 m

洪水吐土羽部勾配:N


切土高さ 4.18 mであるため、

勾配は1: 1.0 とする。 (粘性土の平均値)

小段

5m以下であるので、小段は設置しない。

○標準断面

法勾配: N = 1:1.0 左岸法面: 斜率 = 1.4142 右岸法面: 斜率 = 1.4142

n₂= 0.015 張コンクリート

※土地改良事業計画基準設計「水路工」参照

区分	構造	5年確率洪水量	設計洪水量	単 位	水路勾配	備考
誘導水路	排水溝300×300	0.393	0.972	m³/s	0.07150	(1/ 14)
張コンクリート	無筋コンクリート		0.972	m³/s	0.07150	(1/ 14)

誘導水路の形状寸法表(仮定断面:排水溝300×300)

記号	名 称	規格	数値	単 位	適 用
B_1	誘導水路	上幅	0.39	m	排水溝300×300
B ₂	誘導水路	下幅	0.30	m	排水溝300×300
H ₁	誘導水路	高さ	0.30	m	排水溝300×300
h	誘導水路	余裕高	0.032	m	_

○誘導水路の断面計算(等流計算)

通水断面: A= 0.0912 m²

潤辺 (誘導水路): P₁= 0.8420 m

粗度係数(誘導水路): n₁= 0.014

径深: R = 0.108 m 勾配: I = 0.07150 (1/14.0)

V= 4.332 m/s < 最大流速% = 4.50 m/s

※土地改良事業計画基準設計「水路工」参照

 $Q=~0.395~m^3/s~>~5確率洪水流量=~0.393~m^3/s$

『 OK 』

○張コンクリートの断面計算(等流計算)

張コンクリートの形状寸法表(仮定断面)

記号	名 称	規格	数値	単 位	適 用
H ₂	張コン高	直高	0.08	m	最低0.50m
h	余裕高		0.42	m	h ≧0.3m
W_1	管理幅	左岸	0.805	m	W ₁ ≧0.5m
W ₂	管理幅	右岸	0.805	m	W ₂ ≧0.5m
W_3	張コン幅	下幅	2.00	m	$B_1+W_1+W_2$
W ₄	張コン幅	上幅	2.16	m	$W_3+H_2\times N\times 2$

誘導水路の形状寸法表(仮定断面:排水溝300×300)

記号	名 称	規格	数値	単 位	適 用
B_1	誘導水路	上幅	0.390	m	排水溝300×300
B ₂	誘導水路	下幅	0.300	m	排水溝300×300
H ₁	誘導水路	高さ	0.300	m	排水溝300×300
h	誘導水路	余裕高	0.000	m	排水溝300×300

通水断面:A =誘導水路の通水断面積 $+1/2 \times (W_3 + W_4) \times H_2$

 m^2 = 0.2699

潤辺 (誘導水路): P₁= 0.9067

潤辺(張コンクリート): P₂= 1.836 m

潤辺計 (P₁+P₂): P = 2.7427 m

粗度係数(誘導水路): n₁= 0.014 粗度係数(張コンクリート): n₂= 0.015

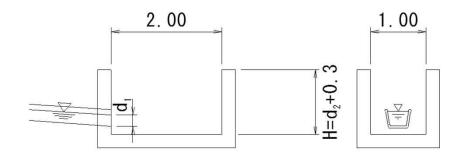
> $n = \{1/P \times (P_1 \times n_1^{3/2} + P_2 \times n_2^{3/2})\}^{2/3}$ 合成粗度係数: n = 0.015

> > 径深:R = 0.098 勾配: I = 0.07150 (1/14.0)

V= 3.789 m/s

Q = 1.023 m^3/s > 設計洪水流量 = 0.972 m^3/s

[OK]


従って、設計洪水位は誘導水路天端から 0.08 mとなる。

張コンクリートの施工高は、「設計洪水位+余裕高0.3m」以上とし最小高を0.5mとする。 「設計洪水位+余裕高0.3m」= 0.38 mのため、

施工高= 0.5 mとする。

水路断面計算(減勢工)

○減勢桝の断面計算

1-3 水路断面計算(放水路)の断面計算より

流速: V_1 = 4.332 m/s 水深: d_1 = 0.268 m

土地改良事業設計指針『ため池整備』より跳水後の水深を求めると、

$$d_2/d_1 = 1/2 \times ((1+8 \cdot F_1^2)^{1/2} - 1)$$

d₁: 跳水始点における水深(m)

d₂: 跳水末端における水深(m)

 F_1 : 跳水始点のフルード数 $(V_1/(g \times d_1)^{1/2}$

 $F_1 = 2.673$

$$d_2 = d_1 \times 1/2 \times ((1+8 \cdot F_1^2)^{1/2} - 1)$$

= 0.45 \times 1/2 \times ((1+8 \times 2.138^2)^{1/2} - 1)
= 0.888 m

減勢工の壁高:
$$H = d_2 + 0.3$$
 (余裕高)
= 1.188 m 以上

減勢桝は

	値	単位	備考
長さ	2.00	m	
幅	1.00	m	
深さ	1.20	m	

○設計洪水流量

ため池改修の設計洪水流量は、次のうち最も大きい流量の1.2倍とする 土地改良事業設計指針『ため池整備』(以下、「ため池設計指針」)より

- ①確率的に200年に1回起こると推定される200年確率洪水流量(以下、「A項流量」)
- ②観測あるいは、洪水痕跡等から推定される既往最大洪水流量(以下、「B項流量」)
- ③気象・水象条件の類似する近傍流域における水象、若しくは気象の観測結果から 推定される最大洪水流量(以下、「C項流量」)

(1) A項流量の計算(200年確率雨量)

①洪水到達時間の推定

洪水到達時間は次式によって求める。

$$t_{\rm p} = C \cdot A^{0.22} \cdot r_{\rm e}^{-0.35}$$

ここで、 A:流域面積 (km²)

r。: 洪水到達時間 to内の平均有効降雨強度 (mm/h)

C:流域の土地利用形態に応じて異なる定数

 t_n が分単位のときのCの値は、表-3.2.1による。

降雨強度は島根県土木部河川課「島根県短時間降雨強度曲線式」を適用する

1175.49 降雨強度式 (松江管内) † 0.586 + 2.46

A = 0.037 (km²) ←流域図より 流域面積

時間係数 C = 260

区分	C値	面積	積
自然丘陵山地	290	0.032	9.280
ため池	70	0.005	0.350
計	260	0.037	9.630

洪水到達時間

表-3.2.1 洪水到達時間係数 C の値 (角屋・福島)

· 自然丘陵山地 : C = 250 ~ 350 ≒ 290 ·放 牧 地: C=190~210 = 200 ·ゴルフ場: C=130~150 = 140

開発直後粗造成宅地、舗装道路及び水路の密な農地 : C = 90 ~ 120 ≒ 100

·市 街 地: C=60~90≒70

流出係数

 $f_{\rm p} = 0.63$

表-3.2.2 物部によって提示されたピーク流出係数

地形の状態 地形の状態 f_p fp 0.70~0.80 0.75~0.90 かんがい中の水田 急しゅんな山地 第三紀層山地 0.70~0.80 山地河川 0.75~0.85 平均値0.63→ | 起伏のある土地及び樹林地 0.50~0.75 平地小河川 0.45~0.75 0.45~0.60 0.50~0.75 流域のなかば以上が平地である大河川

仮定の洪水到達時間を t=60とし、 t と t_p の値が同じになるまで繰り返す。

t	r _e	t_p	
60	55.0	31.0	
31	74.5	27.8	
27.8	78.1	27.4	
27.4	78.6	27.3	
27.3	78.8	27.3	←採用値

②洪水量の算定

$$Q_A = \frac{1}{3.6} \cdot r_e \cdot A \qquad (3.2.1)$$

Q₄: 洪水ピーク流量 (m³/s)

 r_e : 洪水到達時間內流域平均有効降雨強度 (mm/h)

A : 流域面積 (km²)

$$r_e = f_{p^*} r \qquad (3.2.3)$$

降雨強度	r	mm/hr	125.0
流出係数	fp		0.63
有効降雨強度	r _e	mm/hr	78.8
流域面積	Α	km²	0.037
流量	Q_A	m³/s	0.810

←200年確率洪水流量

(2) B項流量の計算

不明

(3) C項流量の計算

松江気象台データより 77.9 mm/hr (1944.8.25)

降雨強度曲線より(200年確率)87.0 mm/hr ①計算上の降雨強度125.0 mm/hr ②

拡大率:②/① 1.437

C項雨量強度 77.9 × 1.437 = 111.9 mm/hr

 $Q = 1/3.6 \times f \times R \times A = 0.725 \text{ m}^3/\text{s}$

設計洪水流量

項目	洪水流量	単 位	摘要
A項	0.810	m³/s	最大流量
B項	-	m³/s	
C項	0.725	m³/s	

上表より、設計洪水流量は

 $0.810 \times 1.2 = 0.972 \text{ m}^3/\text{s}$

○誘導水路洪水流量の計算(確率雨量)

(1) 洪水流量の計算

①洪水到達時間の推定

洪水到達時間は次式によって求める。

$$t_p = C \cdot A^{0.22} \cdot r_e^{-0.35}$$

ここで、 A:流域面積 (km²)

r。: 洪水到達時間 tp内の平均有効降雨強度 (mm/h)

C:流域の土地利用形態に応じて異なる定数

 t_p が分単位のときのCの値は、表-3.2.1による。

降雨強度は島根県土木部河川課「島根県短時間降雨強度曲線式」を適用する

降雨強度式 r = <u>t b + C</u>

確率	а	b	С
2年	456.23	0.597	1.65
5年	599.99	0.586	1.83
10年	709.62	0.585	2.00

流域面積 A = 0.037 (km²) ←流域図より

時間係数 C = 260

区分	C値	面積	積
自然丘陵山地	290	0.032	9.280
ため池	70	0.005	0.350
計	260	0.037	9.630

表-3.2.1 洪水到達時間係数 C の値 (角屋・福島)

・自然丘陵山地 : C = 250 ~ 350 ≒ 290 ・放 牧 地 : C = 190 ~ 210 ≒ 200

・ゴルフ場: C=130~150≒140

・開発直後粗造成宅地、舗装道路及び水路の密な農地 : C = 90 ~ 120 ≒ 100

·市 街 地: C=60~90≒70

流出係数 $f_p = 0.63$

表-3.2.2 物部によって提示されたピーク流出係数

平均值0.63→

地形の状態	f_{p}	地形の状態	f_p
急.しゅんな山地	0.75~0.90	かんがい中の水田	0.70~0.80
第三紀層山地	0.70~0.80	山地河川	0.75~0.85
起伏のある土地及び樹林地	0.50~0.75	平地小河川	0.45~0.75
平りな耕地	0.45~0.60	流域のなかば以上が平地である大河川	0.50~0.75

到達時間

仮定の洪水到達時間を t=60とし、 t と t_p の値が同じになるまで繰り返す。

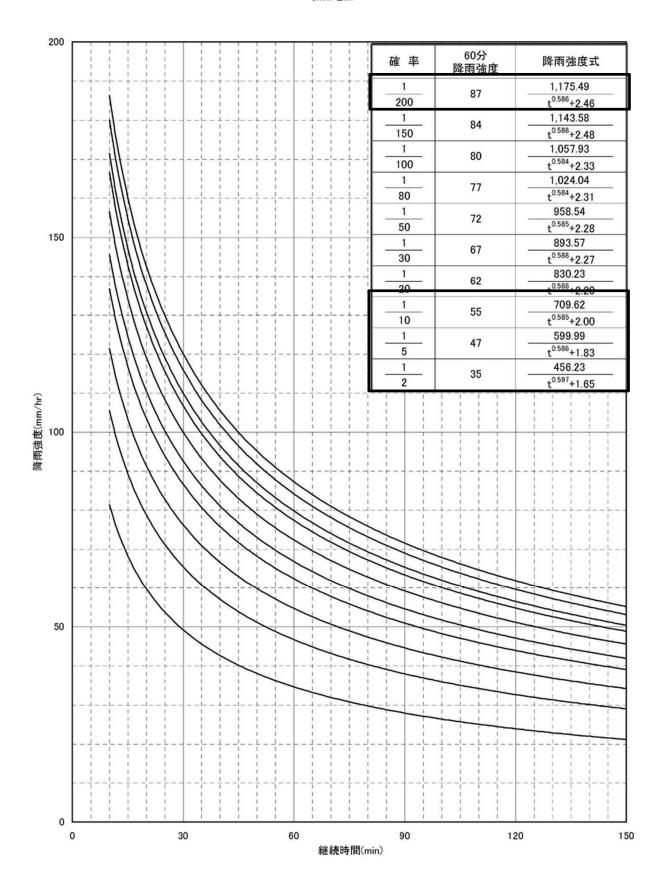
	2年確率			5年確率		10年確率			
t	r _e	t_p	t	r _e	t_p	t	r _e	t_p	
60	21.8	42.8	60	29.4	38.6	60	34.5	36.5	
42.8	26.0	40.2	38.6	36.6	35.7	36.5	43.8	33.5	
40.2	26.8	39.8	35.7	38.0	35.2	33.5	45.6	33.1	
39.8	26.9	39.8	35.2	38.2	35.2	33.1	45.9	33.0	
						33.0	45.9	33.0	

②洪水量の算定

$$Q_A = \frac{1}{3.6} \cdot r_e \cdot A \qquad (3.2.1)$$

Q₄: 洪水ピーク流量 (m³/s)

 r_e : 洪水到達時間内流域平均有効降雨強度 (mm/h)


A : 流域面積 (km²)

$$r_e = f_{\rho} \cdot r$$
 (3.2.3)

確率	年	2年確率	5年確率	10年確率				
降雨強度	r	mm/hr	42.8	60.7	72.9			
流出係数	f_p		0.63					
有効降雨強度	r _e	mm/hr	27.0	38.2	45.9			
流域面積	Α	km²	0.037					
流量	Q_A	m³/s	0.278	0.393	0.472			

「島根県短時間降雨強度曲線式」島根県土木部河川課 松江管内

松江地区

流 域 図

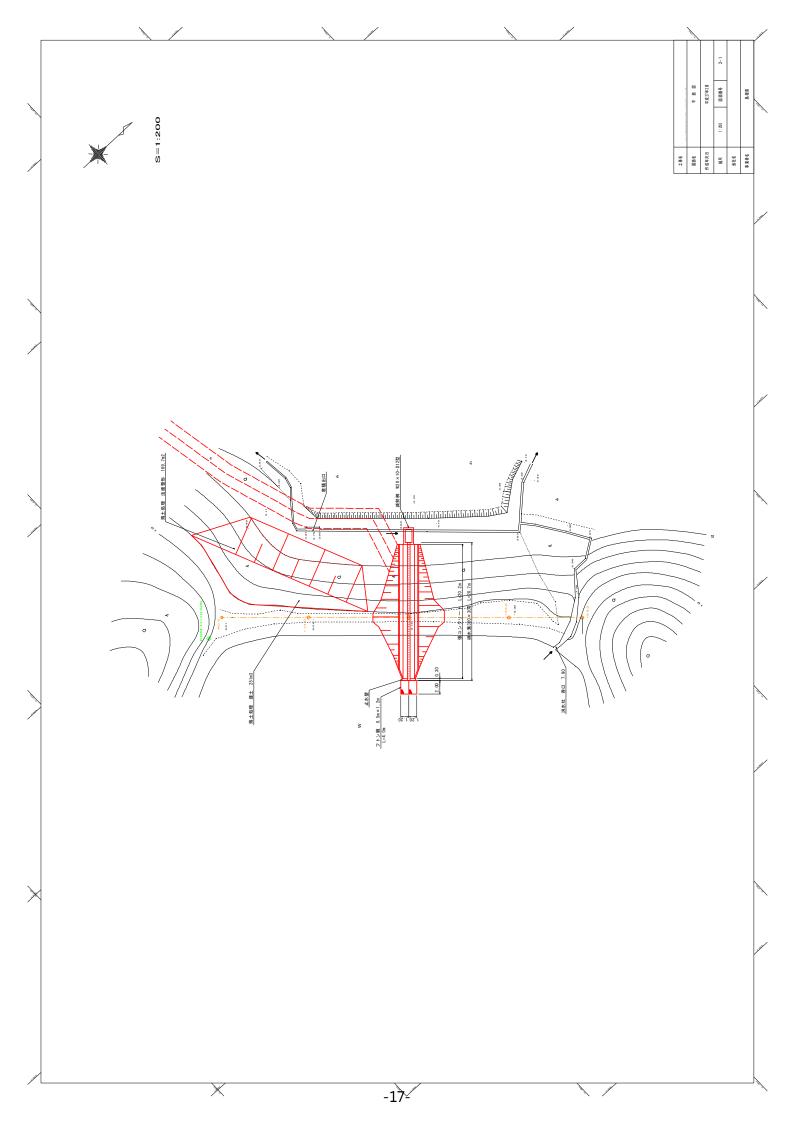
事例 A 池「切開」工事 概算工事費

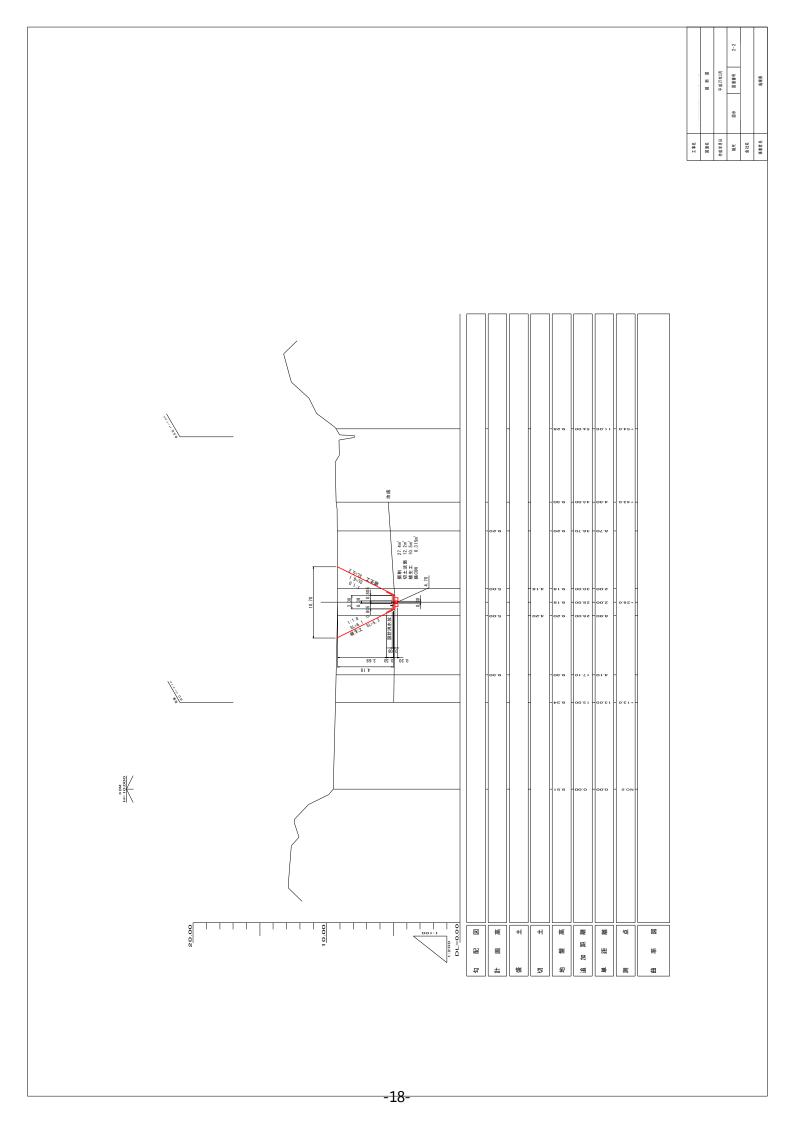
ため池諸元

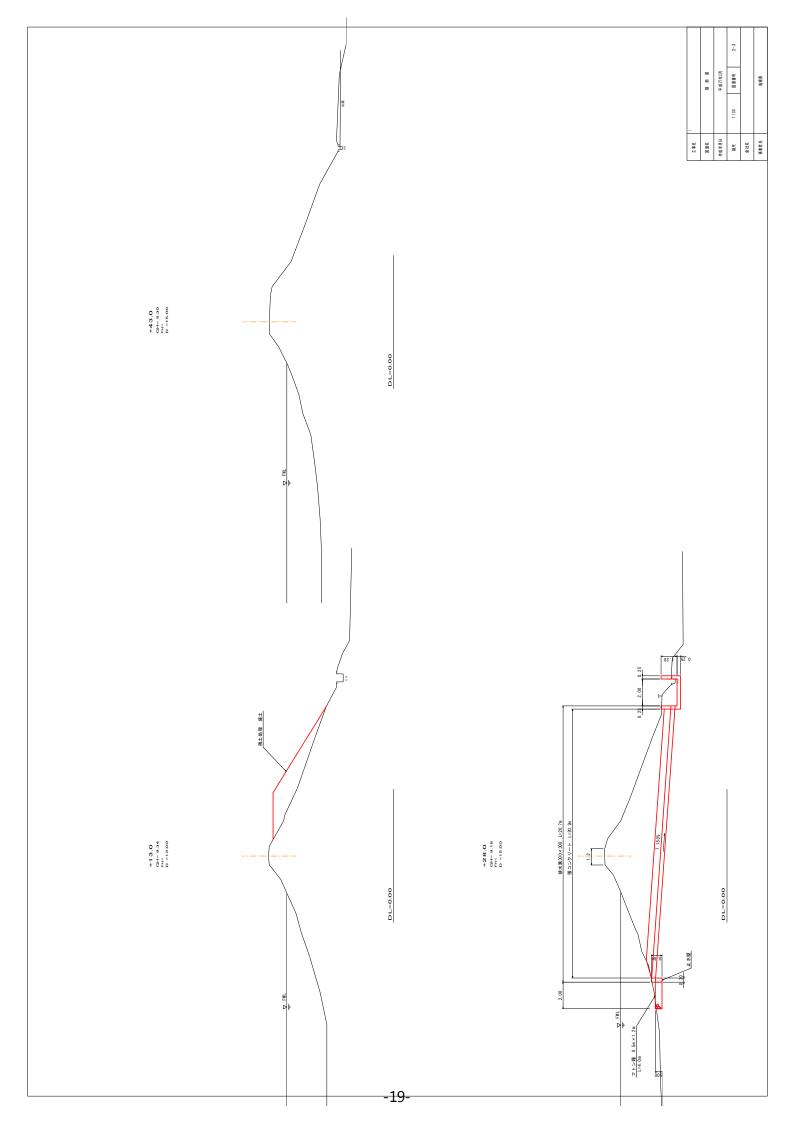
天端幅 1.2 m 貯水量 36,300 m³

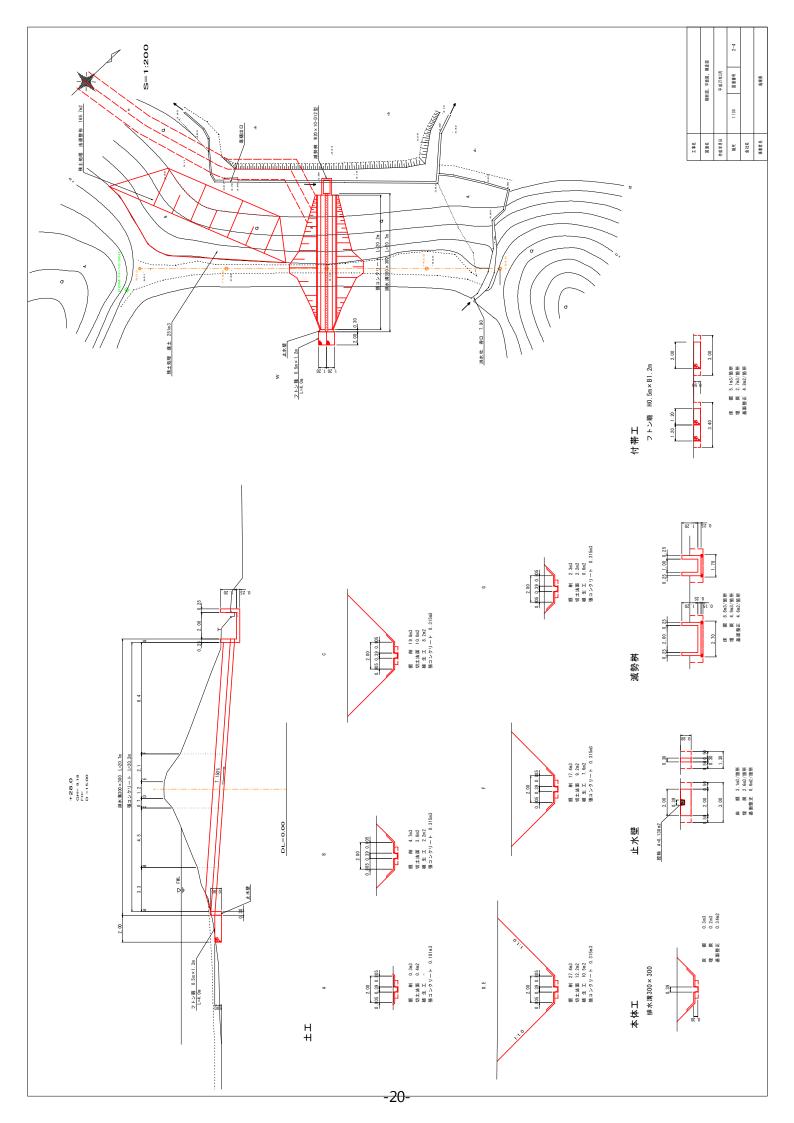
堤高4.1m上流側法勾配1:2.2堤長54m下流側法勾配1:2.6

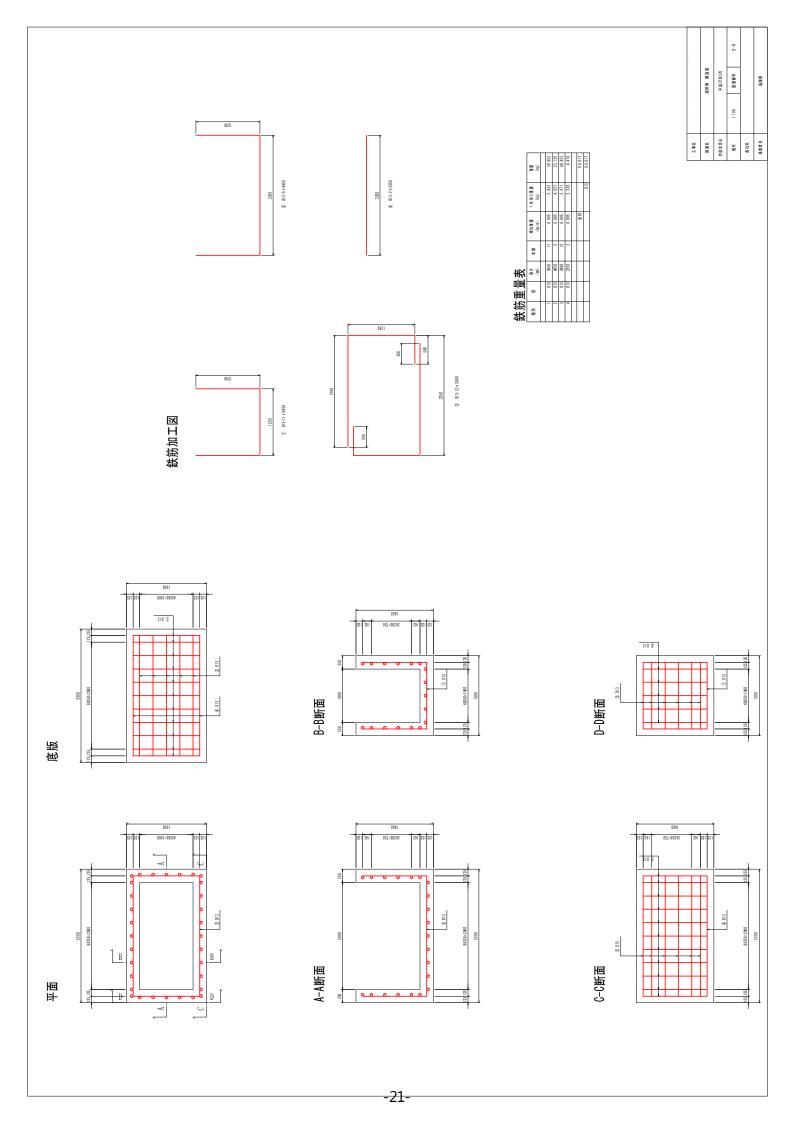
工	種	名	称	規	格	数	量	単位	単価 (円)	金額 (円)	備	考
ため池切	開工事											
開削												
		堤体掘削		0.45r	n3BH		243	m^3	776	188,568		
		小運搬		土砂			243	m^3	586	142,398	D=50m	
		計	•							330,966		
残土処	理											
		盛土					251	m^3	462	115,962		
		法面整形		盛土			170	m^2	576	97,920		
		計	•							213,882		
法面工												
		法面整形		切土			131	m ²	682	89,342		
		張コンク	リート	小構			6.3	m^3	25,160	158,508		
		張芝					100	m^2	1,755	175,500		
		計	•							423,350		
洪水吐	I											
作業	土工	床掘					23	m ³	241	5,543		
		埋戻					14	m^3	1,887	26,418		
		基面整正					17	m^2	278	4,726		
本体	I	排水溝30				21	m	4,893	102,753			
止水	壁	コンクリ	-	小構			0.4	m^3	25,160	10,064		
		型枠					3.4	m^2	5,282	17,958		
減勢	桝	基礎砕石		RC-4	0		4.6	m^2	1,008	4,636		
		コンクリ	-	鉄筋			3.0	m^3	21,700	65,100		
		型枠					18.8	m^2	5,857	110,111		
		鉄筋					0.1	t	127,900	12,790		
付帯	I	ふとん篭					5	m^2	10,530	52,650		
		計	•							412,749		
工事用	道路											
		掘削	-				22	m ²	776	17,072		
		盛土					21	m^3	462	9,702		
		法面整形		盛土			24	m^3	576	13,824		
		計								40,598		


事例 A 池「切開」工事 概算工事費


ため池諸元


天端幅 1.2 m 貯水量 36,300 m³


堤高4.1m上流側法勾配1:2.2堤長54m下流側法勾配1:2.6


工 種	名 称	規格	数量	₽	単位	単価 (円)	金額 (円)	備	考
水替工									
	排水ポンプ設置撤	去		1	箇所	57,420	57,420		
	排水ポンプ運転	120m ³ 未満		13	П	15,670	203,710	常時	
	排水ポンプ運転	120m ³ 未満		11	日	8,569	94,259	作業時	
	計						355,389		
直接工事費計							1,776,934		
諸経費				80	%		1,421,547		
工事価格							3,198,481		
消費税相当額				8	%		255,878		
工事費計							3,454,359		

